web analytics
Skip to main content

Section 5.1 The dot product

Definition 5.1.0.1.

For two-dimensional vectors \(\vvec\) and \(\wvec\text{,}\) their dot product \(\vvec\cdot\wvec\) is the scalar defined to be
\begin{equation*} \vvec\cdot\wvec = \twovec{v_1}{v_2}\cdot\twovec{w_1}{w_2} = v_1w_1 + v_2w_2\text{.} \end{equation*}

Definition 5.1.0.2.

For \(n\)-dimensional vectors \(\vvec\) and \(\wvec\text{,}\) their dot product \(\vvec\cdot\wvec\) is the scalar defined to be
\begin{equation*} \vvec\cdot\wvec = v_1w_1 + v_2w_2+\cdots + v_nw_n\text{.} \end{equation*}

Activity 5.1.0.1.

Suppose that \(\vvec=\twovec{3}{4}\) and \(\wvec=\twovec{2}{-2}\text{.}\)

(a)

Compute the dot product \(\vvec\cdot\wvec \text{.}\)

(b)

Sketch the vector \(\vvec\text{.}\) Then use the Pythagorean theorem to find the length of \(\vvec\text{.}\)

(c)

Compute the dot product \(\vvec\cdot\vvec\text{.}\) How is the dot product related to the length of \(\vvec\text{?}\)

Definition 5.1.0.3.

The magnitude, or length, of \(\vvec\text{,}\) which we denote as \(\len{\vvec}\text{,}\) is \(\len{\vvec} = \sqrt{(v_1)^2 + (v_2)^2+\cdots + (v_n)^2}\text{.}\)
We saw in the first activity that \(\vvec\cdot\vvec = \len{\vvec}^2\text{.}\)

Definition 5.1.0.4.

Two vectors \(\vvec\) and \(\wvec\) are perpendicular or orthogonal if \(\vvec\cdot\wvec=0\text{.}\)

Activity 5.1.0.2.

Let \(\vvec=\twovec32\) and \(\wvec=\twovec{-1}3\text{.}\)

(a)

Find the lengths \(\len{\vvec}\) and \(\len{\wvec}\) using the dot product.

(b)

Find the dot product \(\vvec\cdot\wvec\text{.}\) Are \(\vvec\) and \(\wvec\) orthogonal?

(c)

Consider the vector \(\xvec = \twovec{-2}{3}\text{.}\) Find \(\vvec\cdot \xvec\text{.}\) Are \(\vvec\) and \(\xvec\) orthogonal?

(d)

For what value of \(k\) is the vector \(\twovec6k\) perpendicular to \(\wvec\text{?}\)

Activity 5.1.0.3.

Suppose that
\begin{equation*} \vvec=\fourvec203{-2}, \hspace{24pt} \wvec=\fourvec1{-3}41\text{.} \end{equation*}

(a)

Find \(\len{\vvec}\text{.}\)

(b)

Find \(\len{\wvec}\text{.}\)

(c)

Find \(\vvec\cdot\wvec\text{.}\)