Given a square \(n\times n\) matrix \(A\text{,}\) we say that a nonzero vector \(\vvec\) is an eigenvector of \(A\) if there is a scalar \(\lambda\) such that
Letβs now consider the eigenvector condition: \(A\vvec = \lambda\vvec\text{.}\) Here we have two vectors, \(\vvec\) and \(A\vvec\text{.}\) If \(A\vvec =
\lambda\vvec\text{,}\) what is the geometric relationship between \(\vvec\) and \(A\vvec\text{?}\)
Choose the matrix \(A=
\left[\begin{array}{rr}
1\amp 2 \\
2\amp 1 \\
\end{array}\right]
\text{.}\) Move the vector \(\vvec\) so that the eigenvector condition holds. What is the eigenvector \(\vvec\) and what is the associated eigenvalue?
Are you able to find another eigenvector \(\vvec\) that is not a scalar multiple of the first one that you found? If so, what is the eigenvector and what is the associated eigenvalue?
Now consider the matrix \(A = \left[\begin{array}{rr}
2 \amp 1 \\
0 \amp 2 \\
\end{array}\right]
\text{.}\) Use the applet to describe any eigenvectors and associated eigenvalues.
Suppose that we work for a car rental company that has two locations, \(P\) and \(Q\text{.}\) When a customer rents a car at one location, they have the option to return it to either location at the end of the day. After doing some market research, we determine:
80% of the cars rented at location \(P\) are returned to \(P\) and 20% are returned to \(Q\text{.}\)
Suppose that there are 1000 cars at location \(P\) and no cars at location \(Q\) on Monday morning. How many cars are there are locations \(P\) and \(Q\) at the end of the day on Monday?
We can write the vector \(\xvec_k = \twovec{P_k}{Q_k}\) to reflect the number of cars at the two locations at the end of day \(k\text{,}\) which says that
We said that 1000 cars are initially at location \(P\) and none at location \(Q\text{.}\) This means that the initial vector describing the number of cars is \(\xvec_0 =
\twovec{1000}{0}\text{.}\) Write \(\xvec_0\) as a linear combination of \(\vvec_1\) and \(\vvec_2\text{.}\)
Remember that \(\vvec_1\) and \(\vvec_2\) are eigenvectors of \(A\text{.}\) Use the linearity of matrix multiplicaiton to write the vector \(\xvec_1 =
A\xvec_0\text{,}\) describing the number of cars at the two locations at the end of the first day, as a linear combination of \(\vvec_1\) and \(\vvec_2\text{.}\)
Write the vector \(\xvec_2 = A\xvec_1\) as a linear combination of \(\vvec_1\) and \(\vvec_2\text{.}\) Then write the next few vectors as linear combinations of \(\vvec_1\) and \(\vvec_2\text{:}\)
What will happen to the number of cars at the two locations after a very long time? Be able to explain how writing \(\xvec_0\) as a linear combination of eigenvectors helps you determine the long-term behavior.