Skip to main content \(\newcommand{\avec}{{\mathbf a}}
\newcommand{\bvec}{{\mathbf b}}
\newcommand{\cvec}{{\mathbf c}}
\newcommand{\dvec}{{\mathbf d}}
\newcommand{\dtil}{\widetilde{\mathbf d}}
\newcommand{\evec}{{\mathbf e}}
\newcommand{\fvec}{{\mathbf f}}
\newcommand{\nvec}{{\mathbf n}}
\newcommand{\pvec}{{\mathbf p}}
\newcommand{\qvec}{{\mathbf q}}
\newcommand{\svec}{{\mathbf s}}
\newcommand{\tvec}{{\mathbf t}}
\newcommand{\uvec}{{\mathbf u}}
\newcommand{\vvec}{{\mathbf v}}
\newcommand{\wvec}{{\mathbf w}}
\newcommand{\xvec}{{\mathbf x}}
\newcommand{\yvec}{{\mathbf y}}
\newcommand{\zvec}{{\mathbf z}}
\newcommand{\rvec}{{\mathbf r}}
\newcommand{\mvec}{{\mathbf m}}
\newcommand{\zerovec}{{\mathbf 0}}
\newcommand{\onevec}{{\mathbf 1}}
\newcommand{\real}{{\mathbb R}}
\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2
\end{array}\right]}
\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2
\end{array}\right]}
\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3
\end{array}\right]}
\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3
\end{array}\right]}
\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4
\end{array}\right]}
\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4
\end{array}\right]}
\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\
#4 \\ #5 \\ \end{array}\right]}
\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\
#4 \\ #5 \\ \end{array}\right]}
\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}
\newcommand{\laspan}[1]{\text{Span}\{#1\}}
\newcommand{\bcal}{{\cal B}}
\newcommand{\ccal}{{\cal C}}
\newcommand{\scal}{{\cal S}}
\newcommand{\wcal}{{\cal W}}
\newcommand{\ecal}{{\cal E}}
\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}
\newcommand{\gray}[1]{\color{gray}{#1}}
\newcommand{\lgray}[1]{\color{lightgray}{#1}}
\newcommand{\rank}{\text{rank}}
\newcommand{\row}{\text{Row}}
\newcommand{\col}{\text{Col}}
\renewcommand{\row}{\text{Row}}
\newcommand{\nul}{\text{Nul}}
\newcommand{\var}{\text{Var}}
\newcommand{\corr}{\text{corr}}
\newcommand{\len}[1]{\left|#1\right|}
\newcommand{\bbar}{\overline{\bvec}}
\newcommand{\bhat}{\widehat{\bvec}}
\newcommand{\bperp}{\bvec^\perp}
\newcommand{\xhat}{\widehat{\xvec}}
\newcommand{\vhat}{\widehat{\vvec}}
\newcommand{\uhat}{\widehat{\uvec}}
\newcommand{\what}{\widehat{\wvec}}
\newcommand{\Sighat}{\widehat{\Sigma}}
\newcommand{\circledNumber}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 3.2 Bases and coordinate systems
Activity 3.2.1 .
Consider the vectors
\begin{equation*}
\vvec_1 = \twovec{2}{1},
\vvec_2 = \twovec{1}{2}
\end{equation*}
in \(\real^2\text{.}\)
(a)
Find the linear combination
\(\vvec_1 -
2\vvec_2\text{.}\)
(b)
Express the vector
\(\twovec{-3}{0}\) as a linear combination of
\(\vvec_1\) and
\(\vvec_2\text{.}\)
(c)
Find the linear combination
\(10\vvec_1 -
13\vvec_2\text{.}\)
(d)
Express the vector
\(\twovec{16}{-4}\) as a linear combination of
\(\vvec_1\) and
\(\vvec_2\text{.}\)
(e)
Explain why every vector in
\(\real^2\) can be written as a linear combination of
\(\vvec_1\) and
\(\vvec_2\) in exactly one way.
Definition 3.2.1 .
A set of vectors
\(\vvec_1,\vvec_2,\ldots,\vvec_n\) in
\(\real^m\) is called a
basis for
\(\real^m\) if the set of vectors spans
\(\real^m\) and is linearly independent.
Activity 3.2.2 .
Use the definition of a basis to determine whther the following sets of vectors form a basis for the appropriate
\(\real^n\)
(a)
In the first activity, we considered a set of vectors in \(\real^2\text{:}\)
\begin{equation*}
\vvec_1 = \twovec{2}{1},
\vvec_2 = \twovec{1}{2}\text{.}
\end{equation*}
Explain why these vectors form a basis for \(\real^2\text{.}\)
(b)
Consider the set of vectors in \(\real^3\)
\begin{equation*}
\vvec_1 = \threevec{1}{1}{1},
\vvec_2 = \threevec{0}{1}{-1},
\vvec_3 = \threevec{1}{0}{-1}\text{.}
\end{equation*}
and determine whether they form a basis for \(\real^3\text{.}\)
(c)
Do the vectors
\begin{equation*}
\vvec_1 = \threevec{-2}{1}{3},
\vvec_2 = \threevec{3}{0}{-1},
\vvec_3 = \threevec{1}{1}{0},
\vvec_4 = \threevec{0}{3}{-2}
\end{equation*}
form a basis for \(\real^3\text{?}\)
Activity 3.2.3 .
We can determine whether a set of vectors is a basis using RREF.
(a)
Explain why the vectors
\(\evec_1,\evec_2,\evec_3\) form a basis for
\(\real^3\text{.}\)
(b)
If a set of vectors \(\vvec_1,\vvec_2,\ldots,\vvec_n\) forms a basis for \(\real^m\text{,}\) what can you guarantee about the pivot positions of the matrix
\begin{equation*}
\left[\begin{array}{rrrr}
\vvec_1 \amp \vvec_2 \amp \ldots \amp \vvec_n
\end{array}\right]\text{?}
\end{equation*}
(c)
If the set of vectors
\(\vvec_1,\vvec_2,\ldots,\vvec_n\) is a basis for
\(\real^{10}\text{,}\) how many vectors must be in the set?
Activity 3.2.4 .
If
\(\{\vvec_1,\vvec_2,\vvec_3,\vvec_4\}\) is a basis for
\(\IR^4\text{,}\) that means the reduced row echelon form of the matrix
\([\vvec_1\,\vvec_2\,\vvec_3\,\vvec_4]\) doesnβt have a column without a pivot position, and doesnβt have a row of zeros. Determine the reduced row echelon form below.
\begin{equation*}
\RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4]
=
\left[\begin{array}{cccc}
\unknown & \unknown & \unknown & \unknown \\
\unknown & \unknown & \unknown & \unknown \\
\unknown & \unknown & \unknown & \unknown \\
\unknown & \unknown & \unknown & \unknown \\
\end{array}\right]
\end{equation*}
Activity 3.2.5 .
Label each of the sets \(A,B,C,D,E\) as
SPANS
\(\IR^4\) or DOES NOT SPAN
\(\IR^4\)
LINEARLY INDEPENDENT or LINEARLY DEPENDENT
BASIS FOR
\(\IR^4\) or NOT A BASIS FOR
\(\IR^4\)
by finding \(\RREF\) for their corresponding matrices.
\begin{align*}
A&=\left\{
\left[\begin{array}{c}1\\0\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\0\\1\\0\end{array}\right],
\left[\begin{array}{c}0\\0\\0\\1\end{array}\right]
\right\}
&
B&=\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right]
\right\}\\
C&=\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}3\\13\\7\\16\end{array}\right],
\left[\begin{array}{c}-1\\10\\7\\14\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right]
\right\}
&
D&=\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right],
\left[\begin{array}{c}3\\6\\1\\5\end{array}\right]
\right\}\\
E&=\left\{
\left[\begin{array}{c}5\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}-2\\1\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\5\\1\\3\end{array}\right]
\right\}
\end{align*}
Now we want to look at how to convert between two different bases. This is called
change of basis .
Activity 3.2.6 .
Letβs begin with the basis \(\bcal =
\{\vvec_1,\vvec_2\}\) of \(\real^2\) where
\begin{equation*}
\vvec_1 = \twovec{3}{-2},
\vvec_2 = \twovec{2}{1}\text{.}
\end{equation*}
(a)
If the coordinates of
\(\xvec\) in the basis
\(\bcal\) are
\(\coords{\xvec}{\bcal} = \twovec{-2}{4}\text{,}\) what is the vector
\(\xvec\text{?}\)
(b)
If
\(\xvec = \twovec{3}{5}\text{,}\) find the coordinates of
\(\xvec\) in the basis
\(\bcal\text{;}\) that is, find
\(\coords{\xvec}{\bcal}\text{.}\)
(c)
Find a matrix
\(A\) such that, for any vector
\(\xvec\text{,}\) we have
\(\xvec = A\coords{\xvec}{\bcal}\text{.}\) Explain why this matrix is invertible.
(d)
Using what you found in the previous part, find a matrix
\(B\) such that, for any vector
\(\xvec\text{,}\) we have
\(\coords{\xvec}{\bcal} = B\xvec\text{.}\) What is the relationship between the two matrices you have found in this and the previous part? Explain why this relationship holds.
Activity 3.2.7 .
Suppose now we also consider the basis
\begin{equation*}
\ccal = \left\{\twovec{1}{2}, \twovec{-2}{1}\right\}\text{.}
\end{equation*}
Find a matrix \(M\) that converts coordinates in the basis \(\ccal\) into coordinates in the basis \(\bcal\) from the previous activity; that is,
\begin{equation*}
\coords{\xvec}{\bcal} = M \coords{\xvec}{\ccal}\text{.}
\end{equation*}
You may wish to think about converting coordinates from the basis \(\ccal\) into the standard coordinate system and then into the basis \(\bcal\text{.}\)
Activity 3.2.8 .
Suppose we consider the standard basis
\begin{equation*}
\ecal = \{\evec_1,\evec_2\}\text{.}
\end{equation*}
What is the relationship between \(\xvec\) and \(\coords{\xvec}{\ecal}\text{?}\)
In the next activity we explore an application of change of basis in the field of computer vision.
Activity 3.2.9 .