Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\newcommand{\avec}{{\mathbf a}}
    \newcommand{\bvec}{{\mathbf b}}
    \newcommand{\cvec}{{\mathbf c}}
    \newcommand{\dvec}{{\mathbf d}}
    \newcommand{\dtil}{\widetilde{\mathbf d}}
    \newcommand{\evec}{{\mathbf e}}
    \newcommand{\fvec}{{\mathbf f}}
    \newcommand{\nvec}{{\mathbf n}}
    \newcommand{\pvec}{{\mathbf p}}
    \newcommand{\qvec}{{\mathbf q}}
    \newcommand{\svec}{{\mathbf s}}
    \newcommand{\tvec}{{\mathbf t}}
    \newcommand{\uvec}{{\mathbf u}}
    \newcommand{\vvec}{{\mathbf v}}
    \newcommand{\wvec}{{\mathbf w}}
    \newcommand{\xvec}{{\mathbf x}}
    \newcommand{\yvec}{{\mathbf y}}
    \newcommand{\zvec}{{\mathbf z}}
    \newcommand{\rvec}{{\mathbf r}}
    \newcommand{\mvec}{{\mathbf m}}
    \newcommand{\zerovec}{{\mathbf 0}}
    \newcommand{\onevec}{{\mathbf 1}}
    \newcommand{\real}{{\mathbb R}}
    \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2
    \end{array}\right]}
    \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2
    \end{array}\right]}
    \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3
    \end{array}\right]}
    \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3
    \end{array}\right]}
    \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4
    \end{array}\right]}
    \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4
    \end{array}\right]}
    \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\
    #4 \\ #5 \\ \end{array}\right]}
    \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\
    #4 \\ #5 \\ \end{array}\right]}
    \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}
    \newcommand{\laspan}[1]{\text{Span}\{#1\}}
    \newcommand{\bcal}{{\cal B}}
    \newcommand{\ccal}{{\cal C}}
    \newcommand{\scal}{{\cal S}}
    \newcommand{\wcal}{{\cal W}}
    \newcommand{\ecal}{{\cal E}}
    \newcommand{\coords}[2]{\left\{#1\right\}_{#2}}
    \newcommand{\gray}[1]{\color{gray}{#1}}
    \newcommand{\lgray}[1]{\color{lightgray}{#1}}
    \newcommand{\rank}{\text{rank}}
    \newcommand{\row}{\text{Row}}
    \newcommand{\col}{\text{Col}}
    \renewcommand{\row}{\text{Row}}
    \newcommand{\nul}{\text{Nul}}
    \newcommand{\var}{\text{Var}}
    \newcommand{\corr}{\text{corr}}
    \newcommand{\len}[1]{\left|#1\right|}
    \newcommand{\bbar}{\overline{\bvec}}
    \newcommand{\bhat}{\widehat{\bvec}}
    \newcommand{\bperp}{\bvec^\perp}
    \newcommand{\xhat}{\widehat{\xvec}}
    \newcommand{\vhat}{\widehat{\vvec}}
    \newcommand{\uhat}{\widehat{\uvec}}
    \newcommand{\what}{\widehat{\wvec}}
    \newcommand{\Sighat}{\widehat{\Sigma}}
    \newcommand{\circledNumber}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section  3.3  Image Compression 
 
Suppose that we have a basis \(\bcal=\{\vvec_1,\vvec_2,\ldots,\vvec_m\}\)  for \(\real^m\text{.}\)   What do we mean by the representation \(\coords{\xvec}{\bcal}\)  of a vector \(\xvec\)  in the coordinate system defined by \(\bcal\text{?}\) 
The components of the vector \(\coords{\xvec}{\bcal}\)  are the weights that express \(\xvec\)  as a linear combination of the basis vectors;  that is, \(\coords{\xvec}{\bcal} =
\fourvec{c_1}{c_2}{\vdots}{c_m}\)  if \(\xvec=c_1\vvec_1+c_2\vvec_2+\ldots+c_m\vvec_m\text{.}\) 
Activity   3.3.0.1 . 
 
Since we will be using various bases and the coordinate systems they define, let's review how we translate between coordinate systems.
(a) If we are given the representation \(\coords{\xvec}{\bcal}\text{,}\)  how can we recover the vector \(\xvec\text{?}\) 
(b) If we are given the vector \(\xvec\text{,}\)  how can we find \(\coords{\xvec}{\bcal}\text{?}\) 
(c) 
Suppose that
\begin{equation*}
\bcal=\left\{\twovec{1}{3},\twovec{1}{1}\right\}
\end{equation*}
is a basis for 
\(\real^2\text{.}\)   If 
\(\coords{\xvec}{\bcal} = \twovec{1}{-2}\text{,}\)  find the vector 
\(\xvec\text{.}\)   (d) If \(\xvec=\twovec{2}{-4}\text{,}\)  find \(\coords{\xvec}{\bcal}\text{.}\) 
Section 3.3 in Understanding Linear Algebra provides some applications of applications of change of basis, including digital color models and image compression.
Activity   3.3.0.2 . 
 
davidaustinm.github.io/ula/sec-jpeg.html#activity-33